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ABSTRACT

Recursive reasoning of the form what do | think that you think that
| think (and so on) arises often while acting rationally in multiagent
settings. Several multiagent decision-making frameworks such as
RMM, I-POMDP and the theory of mind model recursive reason-
ing as integral to an agent’s rational choice. Real-world applica-
tion settings for multiagent decision making are often mixed in-
volving humans and human-controlled agents. In two large exper-
iments, we studied the level of recursive reasoning generally dis-
played by humans while playing sequential general-sum and fi ed-
sum, two-player games. Our results show that subjects experienc-
ing a general-sum strategic game display firs or second level of
recursive thinking with the firs level being more prominent. How-
ever, if the game is made simpler and more competitive with fi ed-
sum payoffs, subjects predominantly attributed first-1 vel recursive
thinking to opponents thereby acting using second level of reason-
ing. Subsequently, we model the behavioral data obtained from the
studies using the [-)POMDP framework, appropriately augmented
using well-known human judgment and decision models. Accuracy
of the predictions by our models suggest that these could be viable
ways for computationally modeling strategic behavioral data.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms

Experimentation, Performance, Human Factors
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recursive reasoning, human decision making, models

1. INTRODUCTION

Strategic recursive reasoning of the form what do | think that you
think that | think (and so on) arises naturally in multiagent settings.
For example, an autonomous unmanned aerial vehicle (UAV)’s de-
cision may differ if it believes that its reconnaissance target believes
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Informed Interactive POMDPs, Prashant Doshi, Xia Qu, Adam Goodie and
Diana Young, Proc. of 9th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2010), van der Hoek, Kaminka, Lespérance,
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that it is not being spied upon in comparison to when the UAV be-
lieves that its target believes that it is under surveillance. Specifi
cally, an agent’s rational action in a two-agent game often depends
on the action of the other agent, which, if the other is also rational,
depends on the action of the subject agent.

Assumptions of common knowledge [8, 9] of elements of the
game tend to preclude the modeling of recursive reasoning. How-
ever, not all elements are common knowledge. For example, an
agent’s belief is private especially in a non-cooperative setting. Mul-
tiple decision-making frameworks such as the recursive modeling
method (RMM) [12, 13] and interactive partially observable Markov
decision process (I-POMDP) [11] model recursive beliefs as an in-
tegral aspect of agents’ decision making in multiagent settings.

Real-world applications of decision making often involve mixed
settings that are populated by humans and human-controlled agents.
Examples of such applications include UAV reconnaissance in an
urban operating theater and online negotiations involving humans.
The optimality of an agent’s decisions as prescribed by frameworks
such as RMM and [-POMDP in these settings depends on how ac-
curately the agent models the strategic reasoning of others. A key
aspect of this modeling is the depth of the recursive reasoning that
is displayed by human agents.

Initial investigations into ascertaining the depth of strategic rea-
soning of humans by Stahl and Wilson [19] and more recently, by
Hedden and Zhang [15] and Ficici and Pfeffer [10] show that hu-
mans generally operate at only firs or second level of recursive
reasoning. Typically the firs level, which attributes no recursive
reasoning to others, is more prominent. Evidence of these shal-
low levels of reasoning is not surprising, as humans are limited by
bounded rationality.

In this paper, we report on two large studies that we conducted
with human subjects to test levels of recursive reasoning. In the firs
study, we constructed a task that resembled the two-player sequen-
tial, general-sum game as used by Hedden and Zhang [15]. Sub-
jects played the game against a computer opponent, although they
were led to believe that the opponent was human. Different groups
of subjects were paired against an opponent that used no recursive
reasoning (zero level) and opposite one that used first-1 vel reason-
ing. Data collected on the decisions of the participants indicate
that, (i) subjects generally attributed zero-level reasoning to the
other & priori; and (i4) subjects acted accurately significantl more
times when the opponent displayed zero-level reasoning than when
the opponent was at firs level. The participants also learned the



reasoning level of opponents slowly and incompletely as reported
previously by Hedden and Zhang. In the second study, we made
the game simultaneously simpler and more competitive by incor-
porating fi ed-sum outcomes. This had the surprising impact that
subjects acted accurately more times when the opponent displayed
first-1 vel reasoning compared to zero level. Furthermore, the par-
ticipants learned the reasoning level of opponents more quickly and
completely than in the previous experiment.

Because [-POMDPs explicitly consider recursive beliefs of agents,
they are a natural choice as a point of departure for computationally
modeling the behavioral data collected in the experiments. We aug-
ment them with well-known human judgment and decision models
that reflec the subrational behavior of humans, also observable in
our data. We learn the parameters of these models by formulating
the problem as a gradient descent through a subset of the data. Pre-
dictions by our models on the remaining data are significantl con-
sistent with actual human decisions. In the absence of additional
experimentation, this may not testify to the cognitive plausibility
of our models. However, they represent a principled way to com-
putationally model strategic behavioral data accurately.

2. RELATED WORK

Harsanyi [14] recognized that indefinit recursive thinking arises
naturally among rational players, which leads to difficult in solv-
ing games. In order to, in part, avoid dealing with recursive reason-
ing, Harsanyi proposed the notion of types and common knowledge
of the joint belief over the player types. However, common knowl-
edge is itself modeled using an indefinit recursive system [8, 9].

Since Harsanyi’s introduction of abstract agent types, researchers
have sought to mathematically defin the type system. Beginning
with Mertens and Zamer [18], who showed that a type could be de-
fine as a hierarchical belief system with strong assumptions on the
underlying probability space, subsequent work [4, 16] has gradu-
ally relaxed the assumptions required on the state space while si-
multaneously preserving the desired properties of the hierarchical
belief systems. Along a similar vein, Aumann define recursive
beliefs using both a formal grammar [1] and probabilities [2] in an
effort to formalize interactive epistemology.

Within the context of behavioral game theory [5], Stahl and Wil-
son [19] investigated the level of recursive thinking exhibited by
humans. Stahl and Wilson found that only 2 out of 48 (4%) of their
subjects attributed recursive reasoning to their opponents while play-
ing 12 symmetric 33 matrix games. On the other hand, 34% of
the subjects ascribed zero-level reasoning to others. Corroborat-
ing this evidence, Hedden and Zhang [15] in a study involving 70
subjects, found that subjects predominantly began with first-1 vel
reasoning. When pitted against first-1 vel co-players, some began
to gradually use second-level reasoning, although the percentage of
such players remained generally low. Hedden and Zhang utilized a
sequential, two-player, general-sum game — sometimes also called
the Centipede game in the literature [3]. Ficici and Pfeffer [10] in-
vestigated whether human subjects displayed sophisticated strate-
gic reasoning while playing 3-player, one-shot negotiation games.
Although their subjects reasoned about others while negotiating,
there was insufficien evidence to distinguish whether their level
two models better fi the observed data than level one models.

Evidence of recursive reasoning in humans and investigations
into the level of such reasoning is relevant to multiagent decision
making in mixed settings. In particular, these results are directly ap-
plicable to computational frameworks such as RMM [12], [-POMDP
[11] and cognitive ones such as theory of mind [7] that ascribe in-
tentional models of behavior to other agents.
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3. EXPERIMENTS: LEVELS OF
RECURSIVE REASONING

In two large studies involving human subjects held simultane-
ously, we investigate the levels of recursive reasoning subjects would
generally exhibit in particular interactions. We begin with a de-
scription of the problem setup followed by the participating popula-
tion and our methodology for the firs experiment. We then provide
similar information for our second experiment.

3.1 Study 1: General-Sum Game

In keeping with the tradition of experimental game research [5,
6] and the games used by Hedden and Zhang [15], we selected a
two-player alternating-move game of complete and perfect infor-
mation. In this sequential game, whose game tree is depicted in
Fig. 1(a), player | (the leader) may elect to move or stay. If player
| elects to move, player Il (the follower) faces the choice of mov-
ing or staying, as well. An action of stay by any player terminates
the game. Note that actions of all players are perfectly observable
to each other. While the game may be extended to any number of
moves, we terminate the game after two moves of player |.

A B [
I Moves Il Moves | M
» »—"% » D A D
I
Stays Stays Stays \J/ | I moves
B 1l mofes ¢
(a) (b)
A B C
I Moves Il Moves | M
> » oves » (0.8,0.4) | gains: 0.6 1 gains: 0.8
Il gains: 0.2 Il gains: 0.4
st st |Im0ves
ays Stays ays TTmoves
| gains: 0.2 —> | gains: 0.4
II'gains: 0.6 1l mpves I gains: 0.8
(0.6,0.2) (0.2,0.6) (0.4,0.8)

(c)

Figure 1: (a) A game tree representation (extensive form) of
our two-player game. Because of its particular structure, such
games are also sometimes called Centipede games. States of the
game are indicated by the letters, A, B, C and D. (b) Arrows
denote the progression of play in the game. An action of move
by each player causes a transition of the state of the game. (c)
An example general-sum game used in the study.

We set the outcomes as probabilities of gain for each player.
Similar to magnitudes, rational choice involves selecting an action
that maximizes the probability of success.

In order to decide whether to move or stay at state A, a rational
player | must reason about whether player | will choose to move or
stay at B. A rational player II’s choice in turn depends on whether
player | will move or stay at C. Thus, the game lends itself naturally
to recursive reasoning and the level of reasoning is governed by the
height of the game tree.

For the example game in Fig. 1(c), a rational player | assuming
that player Il is rational and that Il knows that | is rational, will
choose to stay. This is because | thinks that if it chooses to move,
player Il will choose to stay to obtain a payoff of 0.6. A move by
player Il to C is not rational because player | will then choose to
move as well with the payoft for Il being only 0.4.

3.1.1 Participants
A total of 145 subjects participated in the study. The participants
were undergraduate students enrolled in lower-level courses in our
university. The students received performance-driven pay for par-



ticipating in the study.

All participants gave informed consent for their participation prior
to admission into the study. They were appropriately debriefed at
the conclusion of the study.

3.1.2 Methodology

Opponent models In order to test different levels of recursive
reasoning, we designed the computer opponent (player 1) to play
a game in two ways: (4) If player | chooses to move, |l decides on
its action by simply choosing between the outcomes at states B and
C in Fig. 1(b) rationally. Therefore, Il is a zero-level player and
we call it myopic (see Fig. 2(a)). (éi) If player | chooses to move,
the opponent decides on its action by reasoning what player | will
do rationally at C. Based on the action of |, player Il will select an
action that maximizes its outcomes. Thus, player Il is a first-1 vel
player, and we call it predictive (see Fig. 2(b)).

move—— _<
First-level reasoning B ¢

—move— A —< [B:C]— myopicll

| stay—— B>— C

AS—[B:C]
(a)

Second-level reasoning

move——— C _< D
move—B < [C: D]~|1

stay——— C >—D

move—A ~< [B: [C : D]] predictive Il

| stay———————B »>— [C: D]

stay————— A >— [B:[C:D]]

(b)

Figure 2: (a) A myopic player Il decides on its action by com-
paring the payoff at state B with that at C. Here, B < C denotes
a preference of C over B for the player whose turn it is to play
and B : C denotes the rational choice by the appropriate player
between states B and C. Thus, player | exhibits first-level rea-
soning. (b) If player Il is predictive, it reasons about I’s actions.
Player | then exhibits second-level reasoning in deciding its ac-
tion at state A.

To illustrate, in the game of Fig. 1(c) if player | decides to move,
a myopic player |l will move to obtain a payoff of 0.8, while a
predictive Il will choose to stay because it thinks that player | will
choose to move from C to D, if it moved. By choosing to stay, Il
will obtain an outcome of 0.6 in comparison to 0.4 if it moves.

Payoff structure Notice that the rational choice of players in the
game of Fig. 1 depends on the preferential ordering of states of the
game rather than specifi probabilities. Let a < b indicate that the
player whose turn it is to play prefers state b over a. Games that ex-
hibit a preference orderingof D < C <B <Aand A<B<C <D
for player | are trivial because player | will always opt to stay in the
former case and move in the latter case, regardless of how Il plays.
Furthermore, consider the ordering C < A < B < D for player |
and an ordering D < B < A < C for Il. A myopic opponent will
choose to move while a predictive opponent will stay. However, in
both these cases player | will choose to move. Thus, games whose
states display a preferential ordering of the type mentioned previ-
ously are not diagnostic — regardless of whether player | thinks that
opponent is myopic or is predictive, | will select the same action
precluding a diagnosis of I’s level of recursive reasoning. Of all the
576 distinct preferential orderings among states that are possible
for both players, only 48 are diagnostic and not trivial — e.g., B <
C < A < D for player | and A < D < B < C for Il. For this or-

1225

dering, player | will move if it thinks that the opponent is myopic,
otherwise | will stay if the opponent is thought to be predictive. We
note that the game in Fig. 1(c) follows this preference ordering.

Design of task Batches of participants played the game on com-
puter terminals with each batch having an even number of players.
Each batch was divided into two groups and members of the two
groups were sent to different rooms. This was done to create the
illusion that each subject was playing against another, although the
opponent was in reality a computer program. This deception was
revealed to the subjects during debriefing

Each subject experienced an initial training phase of at least 15
games that were trivial or those in which a myopic or predictive
opponent behaved identically. These games served to acquaint the
participants with the rules and goal of the task without unduly bi-
asing them about the behavior of the opponent. Therefore, these
games have no effect on the initial model of the opponent that par-
ticipants may have. Participants who failed to choose the rational
actions in any of the previous 5 games after the 15-game training
phase continued with new training games until they met the crite-
rion of no rationality errors in the 5 most recent games. Those who
failed to meet this criterion after 40 total training games did not
advance to the test phase, and were removed from the study.

In the test phase, each subject experienced 32 games instantiated
with outcome probabilities that exhibited the diagnostic preferen-
tial orderings. The 32 critical games were divided into 4 blocks of
8 games each. In order to avoid subjects developing a mental set,
we interspersed these games with 8 that exhibited orderings such
as, D < C <A <Band C < B < A < D, resulting in a total of
40 games. These not only serve to distract the participants but also
function as “catch” trials allowing us to identify participants who
may not be attending to the games.

Approximately half the participants played against myopic oppo-
nents while the remaining played against predictive ones. In each
group, all participants were presented with the Centipede and grid
representation of the games with payoffs. All participants also ex-
perienced a screen asking them what they thought the opponent
would play and their confidenc in the prediction, for each game.

3.1.3 Results

Our study spanned a period of three months from February through
April 2009. We report the results of this study below.

Training phase As mentioned before, each of the 145 human sub-
jects initially played a series of 15 games in order to get acquainted
with the general-sum and complete information structure, and ob-
jectives of the task at hand. After this initial phase, participants
who continued to exhibit errors in any of the games up to 40 total
games were eliminated. 31 participants did not progress further in
the study. These participants either failed to understand how the
game is played or exhibited excessive irrational behavior, which
would have affected the validity of the results of this study.

Test phase Of the 114 participants (65 female) who completed the
test phase, 58 experienced myopic opponents while the remaining
56 experienced predictive opponents.

Participants in each of the 2 groups were presented with 40 in-
stances of the particular game type whose payoff structure is di-
agnostic. For the sake of analysis, we assembled 4 test blocks
each comprising of 10 games — 8 test trials and 2 catch trials. For
each participant, we measured the fraction of times that the subject
played accurately in each test block. We defin the accurate choice
as the action choice which is conditionally rational given the type
of opponent. For example, in the game of Fig. 1(c), the accurate
choice for player I, if the opponent is myopic, is to move. On the
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Figure 3: (a) Mean achievement score of the participants for
both groups across test blocks. Notice that subjects generally
expected their opponents to play at zero level far more than
at first level. (b) Rationality error rates among participants
measured as actions which are not rational given predictions.

Block3 Block4

other hand, if the opponent is predictive, the accurate choice for | is
to stay. We then compiled an achievement score which is the pro-
portion of games in which the subject played the accurate choice
given the opponent type.

In Fig. 3(a), we show the mean achievement scores across all
participants in each of the 2 groups. We observe that the achieve-
ment score is significantl higher when the opponent is myopic as
compared to when it is predictive. Statistical tests (F-test: F(1,112)
=34.31, p<0.001) confir that participants playing against myopic
opponents have statistically significan higher achievement scores
compared to predictive opponents across all test blocks. This im-

plies that subjects predominantly displayed first-1 vel reasoning when

acting. They did not expect the opponent to reason about their sub-
sequent play and acted accordingly. Data collected from the par-
ticipants who experienced the screen asking about the opponents’
possible action and their confidenc in the prediction confirme
this expectation. Additionally, learning took place that was respon-
sive to the opponent with achievement scores showing an increase
across test blocks particularly for the myopic group.

Finally, we computed mean rationality errors, which reflec the
proportion of times that participants’ choices were irrational given
their expectations about the opponents’ decisions. As we show in
Fig. 3(b), the error rates remained consistent across all test blocks
and across both groups.

3.2 Study 2: Fixed-Sum Game

Outcomes from our study of recursive reasoning by humans in
general-sum games are remarkably similar to previous results such
as those of Hedden and Zhang [15]. They confir the predom-
inance of low levels of reasoning by humans engaged in general
strategic games. Our primary motivation behind the second study
is to show demonstrations of higher levels of recursive thinking ei-
ther by default or through learning. We sought to increase the level
of reasoning observed in our participants by making the game more
competitive, and subsequently simpler.

In order to be consistent with our previous study, we again se-
lected the two-player alternating-move game of complete and per-
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fect information. However, the game differed from the previous
one in that the payoffs were probabilities of success for each player
that summed to 1. In other words, if p is the probability of success
for player | at a particular state, then 1 — p is the probability for
player Il. We show an example game in Fig. 4.

A B C
| Moves

Il Moves | Moves

0.8

I gains: 0.6 I gains: 0.8

|1 moves

v

I gains: 0.4 > | gains: 0.2

Stays Stays Stays

T rmoves

0.6 0.4 0.2

Figure 4: An example Centipede game used in the second study.
The payoffs are probabilities of success for player |I. The com-
plement is the probability of success for player II.

In the game of Fig. 4, a rational player | assuming that player
Il is rational and that Il knows that | is rational, will choose to
stay in order to maximize his or her chances of success. This is
because if | moves, then player Il faced with a decision will choose
to stay otherwise | will subsequently move at state C reducing I1’s
probability to 0.2.

3.2.1 Participants and Methodol ogy

A different set of participants for Study 2 were drawn from the
same pool of subjects as in the previous study. The students re-
ceived performance-driven pay for their participation and provided
informed consent for their participation prior to admission into the
study. A total of 140 subjects participated in this study. They were
debriefed at the end of the study.

Opponent models Models of the opponent were set to be iden-
tical to those in Study 1. A myopic player Il decides its action by
choosing between the outcomes at states B and C rationally. On
the other hand, a predictive player Il thinks about what | will do at
C should he or she decide to move.

Payoff structure As with the general-sum game, the rational
choice of players in the game of Fig. 4 depends on the preferen-
tial ordering of states of the game rather than actual probabilities.
Of the 24 distinct preferential orderings of the states, only one or-
dering is diagnostic: C < B < A < D. For this ordering, player |
will move if it thinks that the opponent is myopic, otherwise | will
stay if the opponent is thought to be predictive. Note that the game
in Fig. 4 follows this preference ordering. To maintain the attention
of subjects, we vary the actual probability values while following
the diagnostic ordering, and include “catch” trials. Remaining or-
derings are either trivial for players | or Il, or not diagnostic.

Design of task  As in the previous study, batches of participants
played the game on computers. Each batch was divided into two
groups and members were sent to different rooms. We did this to
create the illusion that each subject was playing against another.
This deception was revealed to the subjects during debriefing

Each subject experienced an initial training phase of at least
15 games that were trivial or those in which a myopic or predic-
tive opponent behaved identically. These games served to acquaint
the participants with the rules and goal of the task without un-
duly biasing them about the behavior of the opponent. Participants
who failed to choose the rational actions in any of the previous 5
games after the 15-game training phase continued with new train-
ing games until they met the criterion of no rationality errors in the
5 most recent games. Those who failed to meet this criterion after
25 total training games did not advance to the test phase.

In the test phase, each subject experienced 40 games instantiated
with outcome probabilities that exhibited the diagnostic preferen-



tial ordering. The 40 critical games were divided into 4 blocks of
10 games each. In order to avoid subjects developing a mental set,
we interspersed these games with 40 “catch” trials that exhibited
the orderings, C < A <B <Dand D < B < A < C. All of the
participants were presented with the Centipede and grid represen-
tation of the games. All the participants experienced the screen
asking them what they thought the opponent would play and their
confidenc in the prediction, for the games.

3.2.2 Reaults

Study 2 was performed simultaneously with the previous study
and also spanned a period of three months from February through
April 2009. We report the results of this study below.

Training phase As we mentioned, each of the 140 human subjects
initially played a series of 15 games in order to get acquainted with
the fi ed-sum and complete information structure, and objectives of
the task at hand. After this initial phase, participants who continued
to exhibit errors in any of the games up to 25 total games were
eliminated. 22 participants did not progress further in the study.

Test phase Ofthe 118 participants (60 female) who completed the
test phase, 58 experienced a myopic opponent and 60 experienced
a predictive opponent.

Participants in each of the 4 groups were presented with 40 in-
stances of the game type whose payoff structure is diagnostic. For
the sake of comparison, we again assembled 4 test blockseach com-
prising 10 games. For each participant, we measured the fraction
of times that the subject played accurately in each test block given
the opponent type, which we called the achievement score. For ex-
ample, in the game of Fig. 4, the accurate choice for player I, if the
opponent is myopic, is to move. On the other hand, if the opponent
is predictive, the accurate choice for | is to stay.

Because opponents types are fi ed and participants experience
40 games, they have the opportunity to learn how their opponent
might be playing the games. Consequently, participants may grad-
ually make more accurate choices over time. Participants were
deemed to have learnt the opponent’s model at the game beyond
which performance was always statistically significantl better than
chance, as measured by a binomial test at the 0.05 level and one-
tailed. This implies making no more than one inaccurate choice in
any window of 10 games.

In Fig. 5, we show mean achievement scores across all partici-
pants for the 2 groups and the rationality error rates. Two group-
level finding are evident from the results in Fig. 5(a): First, the
mean achievement score is significantl higher when opponent is
predictive as compared to when it is myopic. Student t-tests (t(116)
=9.22, p < 0.001) confir that participants playing against pre-
dictive opponents have statistically significan higher proportions
of accuracy compared to myopic opponents across all test blocks.

The higher achievement score when the opponent is predictive in
conjunction with the low score when the opponent is myopic im-
plies that subjects predominantly displayed second-level reasoning
when acting. An analysis of the subjects’ predictions reveals that
they generally expected the opponent to reason about their subse-
quent play (first-1 vel reasoning). The fact that myopic opponents
did not do this resulted in their choices being inaccurate.

Second, notice from Fig. 5(a) that the mean achievement score
improves over successive test blocks in both groups. Multivariate
t-tests of both the main effect of block position and the interaction
between block position and opponent type reveal that the changes
in both groups were significan (p < 0.01). Thus, learning took
place that was responsive to the opponent, although the learning is
slow and not all participants learnt the opponent type. However,
29 of the 58 subjects facing a myopic opponent never established
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Figure 5: (a) Mean achievement score of the participants for
both groups across test blocks. Notice that subjects generally
expected their opponents to play at first level rather than at
zero level. (b) Rationality error rates among participants.

Block3 Block4

statistically significan learning. On the other hand, only 2 among
the predictive group did not establish learning, while 20 subjects
achieved the fastest measurable learning possible. Consequently,
participants learnt to play accurately significantl faster against a
predictive opponent compared to a myopic one.

4. MODELING BEHAVIORAL DATA

Data produced by the studies described in Section 3 focus on
human recursive thinking and subsequent action. In order to com-
putationally model this data, we seek a multiagent decision-making
framework capable of modeling recursive reasoning in the decision-
making process. Finitely-nested interactive POMDPs (I-POMDPs)
[11] are a natural choice because of their explicit consideration of
recursive beliefs and decision making based on such beliefs.

However, I-POMDPs in their original form may not be applica-
ble because human judgment and choice is not known to be nor-
mative. Thus, we will augment I-POMDPs with ways that are well
known in the behavioral and cognitive literature to model relevant
aspects of human decision making. Selection of these models and
their parameters are informed by the data on hand.

4.1 Empirically Informed I-POMDP

Interactive POMDPs generalize POMDPs to multiagent settings
by including other agents’ models as part of the state space [11]. A
finitel nested I-POMDP of agent ¢ with a strategy level [ interact-
ing with another agent, j, is define as the tuple:

[-POMDP; ; = (IS, A, Q:, T3, Os, Ri)

where: e 1.S;; denotes a set of interactive states define as, 1.5;; =
S % Mj_’lfh where Mijl = @jJ,l USMj, forl >1, and ISi,o =
S, where S is the set of states of the physical environment. ©;;_
is the set of computable intentional models of agent j: 6,1 =
(bji—1,0;) where b;;_1 is j’s level I — 1 belief and the frame, 6,
= (4, Q;, T;, 04, Rj, OCj;). Here, j is Bayes rational and OC}
is j’s optimality criterion. S M is the set of subintentional models
of j. In this application, we focus on intentional models only.

e A = A; x Aj is the set of joint actions of all agents. The re-
maining parameters have their usual meaning. For a description of



the belief update, additional details on I-POMDPs and how they
compare with other multiagent frameworks, see [11].

Although the Centipede game involves multiple decision points,
because these are alternating and occur at distinct states for dif-
ferent players, the decisions should be modeled recursively rather
than sequentially. We model the Centipede games used in Stud-
ies 1 and 2 using the -POMDP; ». We note that the physical state
space, S = {A, B,C, D}, is perfectly observable; i’s actions, A;
= {Stay, Move} are deterministic and j has similar actions; i ob-
serves other’s actions, Q; = {Stay, Move}; and R; captures the
diagnostic preferential ordering of the states contingent on which
of the two games is being considered.

Model set, ©; = {0;,1, 6,0}, where 6, 1 is the level 1 predictive
model of the opponent and 6; ¢ is the level 0 myopic model. Pa-
rameters of these models are analogous to those for agent 7, except
for R; which reflect the preferential ordering of the states for the
opponent. Note that the predictive model, 6, 1, includes the level 0
model of 4, 0; o, in its interactive state space. Agent ¢’s belief, b; 2,
assigns a varied distribution to j’s models based on the game being
modeled. This belief will reflec the general defacto thinking of the
subjects about their opponent. It also assigns a marginal probabil-
ity 1 to state A indicating that ¢ decides at that state. Both b;,; and
b;,0 that are part of j’s two models, respectively, assign a marginal
probability 1 to B indicating that j acts at that state. Belief b; o,
that is part of 0; o, assigns probability of 1 to state C'.

Notice from Figs. 3(a) and 5(a) and our discussion in Section
3.2.2 that some of the subjects learn about the opponent model as
they continue to play. However, the rate of learning varies across
subjects, and, in general, the learning is slow and partial. This is in-
dicative of the well-known cognitive phenomenon that the subjects
could be underweighting the evidence that they observe. We may
model this by making the observations slightly noisy and augment-
ing normative Bayesian learning in the following way:

Pr(€j,1|oi) _ P?”(@j 1)

Pr(j0lo) PT(QJ':O) - { }7

where, if 7 < 1, then the evidence o; € €2; is underweighted while
updating the belief over j’s models; if v = 1, then the update is
normative.

Figs. 3(b) and 5(b) reveal the significan presence of rationality
errors in the participants’ decision making. While several models
exist that aim to simulate human non-normative choice, we utilize
the quantal response model [17], which is well corroborated in be-
havioral game theory and applies to our problem. This model is
based on the findin that rather than always choosing the decision
that is of maximum expected utility, individuals are known to select
actions proportionally to their utilities. The quantal response model
accords a probability of choosing an action as a sigmoidal function
of how close to optimal is the action. Mathematically,

PT’(Oi|0j71)
P’/‘(Oz‘|9j,0)

(M

e Ubi2,a7)
AU (bj,2,a;)
Dasea, €0 IR0

where g(a; € A;) is the probability assigned to action, aj, by
the model, U (b; 2, a;) is the utility for ¢ performing the action, a;,
given its belief, b; > as computed by the [-POMDP, and A\ is the pa-
rameter that controls how responsive is the model to value differ-
ences. Within the [-POMDP, we may replace utility maximization
with this model in a straightforward way.

In addition to the above models, we seek to ascertain the prior be-
liefs of agent ¢ for the different games. This is informed, for e.g., by
the fact that approximately 25% of the subjects in Study 2 thought
that the opponent is predictive in the firs 5 games consistently.

qa; € Ai) = 2
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4.2 Learning Parameters from Data

Augmenting [-POMDP based decision making with the models
mentioned previously require us to fin values for the parameters
v (learning rate) and A (non-normative choice). We may formulate
the problem of findin these parameters as that of gradient descent
over an error surface define by the inverse of the data likelihood.
More formally, we seek the parameters that minimize the negative
log likelihood of the data as predicted by the augmented I-POMDP:

Subj
X ==Y log q(af]As)
Subi N XU(bgj,a;‘)
= _ZL;{ 7! 29:1 log < RCIC

a; €A,

where a; is the action from A; selected by the subject 7 in the g*"
game. Subject’s belief, bfﬂ, is updated according to Eq. 1 after each
game instance, g. Notice that the ideal choice model, g, assigns a
probability 1 to each of the actions played by each subject resulting
in the minimum value of X (=0).

The gradient of the error function w.r.t model parameter, \, is:

. )
X — ZlSub]\ N Tg
2D\ i=1 9=1 q(a;|A;) )
AU®GBY . a;)
_ Z|Subj\ ZN U(bg,E’a;)ZaleAi € 27
- i=1 g=1 > AU (b 5.a4)
a;€A; € ’
AU (Y ,,a;)
Yazea; € 27 U(bfyg,aq,)
- UYL a;)
Yasea; e B2

Let «« € [0, 1] be the step size, then we update parameter \ as:
0X
N

In order to revise parameter y, we note that the utility function
becomes, U (V] ,,a:) = Zs,a_j bl 5(s,0;) ERi(s,0;,a;) where,
ER;i(s,0;,a;) = Za_,» Ri(s,ai,a;) Pr(a;|0;) is the expected re-
ward. Here, bfy2 is the updated belief using Eq. 1 if the current
game is not the firs one. Then:

PRI

P = AT S { M3 6.0 P06
x logPr(0i|0;)ER;i(s, 05, a;)

— AU (Y, ay
z:A Xé 695" (5,0,)Pr(0:10;)Vl0gPr(0:]0;) ERi (5,0, ,a;)e Uby 2:%4)
a; €EA;s, j

T o
Yazeaq; NPz

We perform the gradient descent until the values of A and ~ con-
verge approximately. We utilize the converged values of the param-
eters within the augmented I-POMDP.

4.3 Model Performance

We integrated the models of human belief update and choice
(Egs. 1 and 2) within the finitel nested -)POMDP model of de-
cision making. We report on the predictions of our model below.

4.3.1 Parameters

We randomly separated the behavioral data obtained from each
study into training and test sets of approximately equal sizes. For
this, we utilized only the subjects who successfully passed the train-
ing phase in the studies. We used the training sets to learn parame-
ters, v and A, for the general-sum and fi ed-sum games.

General-sum game 57 of the 114 subjects who participated in
Study 1 were randomly selected and their behavioral data was used
to learn the parameters. Of these, 29 had experienced a myopic op-
ponent while 28 had faced a predictive one. Because subjects fac-



ing myopic or predictive opponents displayed learning and acted
significantl differently with different levels of rationality errors,
we ran gradient descent separately on the two groups and report
the parameter values in Table 1. Since each of the two parameters
is obtained by holding the other fi ed, we ensured that the fina val-
ues are in equilibrium. The small + for the myopic group results
in a slightly updated belief about the myopic model after an obser-
vation. This reflect the increase in achievement scores observed
across the test blocks in Fig. 3(a).

Parameters General sum Fixed sum
myopic | predictive | myopic | predictive
A 0.77 0.69 0.43 3.02
~ 0.064 0.072 0.57 0.94

Table 1: Parameter values obtained by running gradient de-
scent on the data from the two studies.

Fixed-sum game Of the 118 subjects who participated in the
critical games, 59 were selected randomly and their data used to
learn the parameters. We ran gradient descent separately on the
two groups of subjects facing different opponents. In Fig. 6, we
show plots of the negative log likelihood, X, with different val-
ues of the parameters for the two groups. Notice the presence of
a distinct minima in each of the graphs. Gradient descent on these
surfaces revealed the values for the parameters given in Table 1;
column values are in equilibrium. We point out the relatively high
value of A for the predictive group, which reflect the very high
achievement scores and low rationality errors for subjects in that
group. Additionally, the low ~ for the myopic group is indicative
of the poor learning among subjects faced with a myopic opponent.

Myopic Predictive

113

345 g
344 112
343 "k
342 110

341 1090 £

340 108

107 L L L L L
0.5 1 15 2

parameter

339 S S S R
01 02 03 04 05 06 07 08 09

parameter

Figure 6: Negative log likelihoods for different values of the
parameters for both the groups. We ran gradient descent to
find parameters responsible for the minima.

4.3.2 Achievement Scores and Rationality Errors

We utilized the learnt values in Table 1 to parameterize the under-
weighting and quantal response choice models within the -POMDP.
We focused on the test set containing data of randomly picked sub-
jects to evaluate the accuracy of our model. Using the subjects’
expectations of the opponent type in the firs 5 games, we set the
prior beliefs. For example, consistent expectations of the opponent
type (regardless of being incorrect) resulted in assigning a highly
informative prior. On the other hand, inconsistent expectations led
to uninformative priors.

General-sum game We obtained model predictions that corre-
spond to the 57 subjects in the test data, of which 29 faced a my-
opic opponent and 28 faced a predictive opponent. First, we visu-
ally compare the mean achievement scores of the model predictions
with those of the study data. As we see in Fig. 7, model predictions
closely align with the study data for the myopic group, with some
difference between the two on the fina two test blocks for the pre-
dictive group, although the trend is consistent and the difference is
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not significant The difference is primarily due to the model pre-
dictions displaying less increase in the achievement score across
test blocks 2 and 3. We quantify the closeness of the fi by com-
puting mean squared error (MSE) of the predictions by our model
(I-POMDP; ), and those of a random model (null hypothesis) for
comparison. We show the MSE for both, the achievement score
and the rationality error rate as predicted by the models, in Table 2.
All differences in MSE between our model and the random model
for both groups are significan (p < 0.05 on Student’s t-test). In
particular, level 1 predictions by our model when the opponent is
myopic are highly consistent with the data; this was the dominant
level of recursive reasoning in the general-sum game.
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Figure 7: Comparison of model predictions with actual data
for both groups in the general-sum game.

Fixed-sum game Predictions from our model were obtained that
corresponded to the 40 game instances played by 29 subjects that
faced a myopic opponent and 30 that faced a predictive opponent,
for the fi ed-sum game. We compute the mean achievement score
of our model predictions and visually compare it with that of the
actual data, in Fig. 8. Notice the difference in the firs test block for
the myopic group, which is due to the fact that subjects made more
rationality errors initially compared to other test blocks. In Table 2,
we show the MSE of the predictions by our model, and compare it
with the MSE of the predictions by a random model (null hypoth-
esis). Differences in the MSE between our model and the random
model are statistically significan (p < 0.05 for t-test). Focusing on
our model, we observe that the MSE of the predicted rationality
errors is higher indicating that the quantal response model could
be improved in how it models human choice and more appropriate
models may be needed.
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Figure 8: Comparison of model predictions with data for both
groups in the fixed-sum game.

5. DISCUSSION

An alternate explanation of the high achievement scores observed
in the fi ed-sum game for the predictive group could be that partici-
pants engaged in backward induction (BI) (or minimax) to solve the
game rather than recursive thinking about opponent behavior. How-
ever, we provide three arguments against this explanation. First, in



Game type | Opponent type Mean Squared Error (MSE)
Achievement score Rationality error rate
Random | I-POMDP; > | Random | I-POMDP;
General myopic 0.01611 0.00341 0.03119 0.00087
sum predictive 0.00443 0.00103 0.02264 0.02312
Fixed myopic 0.01259 0.004828 0.08553 0.03527
sum predictive 0.21490 0.0006278 0.09579 0.02853

Table 2: Goodness of the fit of our model with the study data. We include the random model for assessing significance.

anticipation of this argument participants were asked to reveal their
line of thinking given an example game, during debriefing Two
independent raters evaluated the participant responses for signs of
rote use of BI. The raters agreed that 81.7% of the participants did
not utilize BI. For the remaining participants, either the raters dis-
agreed or were unable to clearly discern that BI was not utilized.
Second, the relatively low achievement scores for the general-sum
game — to which BI also applies — for both types of opponents in-
dicate that the subject pool did not apply these methods. Finally,
the presence of significan learning of opponent models as subjects
played the games provides further evidence that participants were
engaging in recursive reasoning.

A significan contributor to the error between the model predic-
tions and study data was the initial performance of the participants
in the firs few games. Although the participants underwent train-
ing, exposure to the diagnostic games resulted in rationality errors
that were not consistent with the subjects’ performance in remain-
ing test blocks. Furthermore, subject’s performance revealed a gen-
eral trend of declining rationality errors, indicating that subjects be-
came more attentive as the study progressed. Because we viewed
the whole data and used a static A\, our models did not pick up this
unexpected behavior. Investigating and modeling such phenomena
is one aspect of our future work.

In comparison to many other two-player games, the Centipede
game is particularly well-suited to rigorously measuring recursive
thinking. This is because at each state, the corresponding player’s
rational action depends on how the other will act if given the chance,
and not on other’s previous action in that game. The game that we
selected tested recursive reasoning up to two levels. Good perfor-
mance by the subjects in the predictive group playing the fi ed-sum
game suggests that they may think at higher levels; we are testing
this hypothesis in an ongoing study.

Finally, it is tempting to include other types in the model set.
However, this should be motivated by evidence of corresponding
behavior in the data to avoid the set becoming intractably large.

Conclusion Recursive thinking of the form what do | think that
you think that | think (and so on) arises naturally in interactive set-
tings. While recognized frameworks for decision making in multi-
agent settings model recursive reasoning, the depth of the nesting
is often arbitrary. We have shown that humans generally reason at
low levels, but in simple settings exhibit higher levels of reason-
ing. These finding shed important insight into the type of models
that should be ascribed to human agents in mixed settings. Our
simplifie and augmented I-POMDP based model closely fitte the
strategic behavioral data. Nevertheless, the good emulative behav-
ior should not be interpreted as humans using POMDPs in their
minds for decision making.
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